
RECV(2) Linux Programmer’s Manual RECV(2)

NAME
recv, r ve a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, void *buf , int len, unsigned int flags);

int recvfrom(int s, void *buf , int len, unsigned int flags struct sockaddr * from, int * fromlen);

int recvmsg(int s, struct msghdr *msg, unsigned int flags);

DESCRIPTION
The recvfrom and recvmsg are used to receive messages from a socket, and may be used to receive data on
a socket whether or not it is connection-oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is filled in.
Fr omlen is a value-result parameter, initialized to the size of the buffer associated with from, and modified
on return to indicate the actual size of the address stored there.

The recv call is normally used only on a connected socket (see connect(2)) and is identical to recvfrom
with a nil from parameter. As it is redundant, it may not be supported in future releases.

All three routines return the length of the message on successful completion. If a message is too long to fit
in the supplied buffer, excess bytes may be discarded depending on the type of socket the message is
received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is
nonblocking (see fcntl(2)) in which case the v xternal variable errno set to
EWOULDBLOCK. The receive calls normally return any data available, up to the requested amount,
rather than waiting for receipt of the full amount requested; this behavior is affected by the socket-level
options SO_RCVLOWA T and SO_RCVTIMEO described in getsockopt(2).

The select(2) call may be used to determine when more data arrive.

The flags argument to a recv call is formed by or’ing one or more of the values:

MSG_OOB process out-of-band data

MSG_PEEK peek at incoming message

MSG_WAITALL
wait for full request or error

The MSG_OOB flag requests receipt of out-of-band data that would not be received in the
normal data stream. Some protocols place expedited data at the head of the normal data
queue, and thus this flag cannot be used with such protocols. The MSG_PEEK flag causes
the receive operation to return data from the beginning of the receive queue without remov-
ing that data from the queue. Thus, a subsequent receive call will return the same data. The
MSG_WAITALL flag requests that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught, an error or
disconnect occurs, or the next data to be received is of a different type than that returned.

The recvmsg call uses a msghdr structure to minimize the number of directly supplied

BSD Man Page 24 July 1993 1



RECV(2) Linux Programmer’s Manual RECV(2)

parameters. This structure has the following form, as defined in sys/socket.h:

struct msghdr {
caddr_t msg_name; /* optional address */
u_int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
u_int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_control; /* ancillary data, see below */
u_int msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

};

Here msg_name and msg_namelen specify the destination address if the socket is unconnected; msg_name
may be given as a null pointer if no names are desired or required. Msg_iov and msg_iovlen describe scat-
ter gather locations, as discussed in read(2). Msg_control, which has length msg_controllen, points to a
buffer for other protocol control related messages or other miscellaneous ancillary data. The messages are
of the form:

struct cmsghdr {
u_int cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by
u_char cmsg_data[]; */

};

As an example, one could use this to learn of changes in the data-stream in XNS/SPP, or in ISO, to obtain
user-connection-request data by requesting a recvmsg with no data buffer provided immediately after an
accept call.

Open file descriptors are now passed as ancillary data for AF_UNIX domain sockets, with cmsg_level set
to SOL_SOCKET and cmsg_type set to SCM_RIGHTS.

The msg_flags field is set on return according to the message received. MSG_EOR indicates end-of-
record; the data returned completed a record (generally used with sockets of type SOCK_SEQPACKET).
MSG_TRUNC indicates that the trailing portion of a datagram was discarded because the datagram was
larger than the buffer supplied. MSG_CTRUNC indicates that some control data were discarded due to
lack of space in the buffer for ancillary data. MSG_OOB is returned to indicate that expedited or out-of-
band data were received.

RETURN VALUES
These calls return the number of bytes receive

ERRORS
EBADF The argument s is an invalid descriptor.

ENOTCONN
The socket is associated with a connection-oriented protocol and has not been connected (see
connect(2) and accept(2)).

ENOTSOCK
The argument s does not refer to a socket.

EWOULDBLOCK
The socket is marked non-blocking, and the receive operation would block, or a receive time-
out had been set, and the timeout expired before data were received.

BSD Man Page 24 July 1993 2



RECV(2) Linux Programmer’s Manual RECV(2)

EINTR The receive was interrupted by delivery of a signal before any data were available.

EFAULT The receive buffer pointer(s) point outside the process’s address space.

CONFORMING TO
4.4BSD (these function calls first appeared in 4.2BSD).

SEE ALSO
fcntl(2), read(2), select(2), getsockopt(2), socket(2)

BSD Man Page 24 July 1993 3


