
Peg Solitaire

Depth First Recursive Search for Solutions

Using Python

Greg Smith
greg@scoug.com

Presented to the Programming SIG 
of the

Southern California OS/2 Users Group

April 19, 2003



Why Python?

Open Source

Interpreted byte codes – VM approach similar to Pascal, Java, Perl, etc.

Clean, if somewhat unusual syntax

No Begin/End for blocks
No {} for blocks
Consistent use of the semicolon ; (It isn't used)

Can use an Object Oriented approach – if you want to.

Because it is there – Another interesting language to learn.



Python Data Types

Immutable objects (constant) data

Numbers
Integers – Plain Integers and Long Integers
Floating Point
Complex Numbers

Strings – ASCII and Unicode
Tuples

Other objects (data types)

Lists – The items of a list are arbitrary Python objects.
Dictionaries – A dictionary represents finite sets of objects indexed
by arbitrary values.  The arbitrary key must be an immutable type.



Python Gotcha

Assignment is a reference to the object

>>> a = [ 1, 3, 5, 7 ]
>>> b = a
>>> print a
[1, 3, 5, 7]
>>> print b
[1, 3, 5, 7]
>>> b[2] = 73
>>> print b
[1, 3, 73, 7]
>>> print a
[1, 3, 73, 7]
>>> a = [ 7, 5, 3, 1 ]
>>> print b
[1, 3, 73, 7]
>>> print a
[7, 5, 3, 1]



Python Slice Operator

Slice operations make copies of the list objects that they reference

>>> a = [ "cat", "dog", "canary", "ferret", "hamster" ]
>>> b = a[1:3]
>>> print a
['cat', 'dog', 'canary', 'ferret', 'hamster']
>>> print b
['dog', 'canary']
>>> c = a[1:]
>>> print c
['dog', 'canary', 'ferret', 'hamster']
>>> d = a[:]
>>> print d
['cat', 'dog', 'canary', 'ferret', 'hamster']
>>> d[1] = "bad dog"
>>> print d
['cat', 'bad dog', 'canary', 'ferret', 'hamster']
>>> print a
['cat', 'dog', 'canary', 'ferret', 'hamster']



Data Structure for Board Layout

>>> board = [ "--xxx--", \
...                    "--xxx--", \
...                    "xxxxxxx", \
...                    "xxx.xxx", \
...                    "xxxxxxx", \
...                    "--xxx--", \
...                    "--xxx--"  ]
>>> print board
['--xxx--', '--xxx--', 'xxxxxxx', 'xxx.xxx', 'xxxxxxx', '--xxx--', '--xxx--']
>>> for line in board:
... print line
... 
--xxx--
--xxx--
xxxxxxx
xxx.xxx
xxxxxxx
--xxx--
--xxx--



Data Structure for Board Layout

However, strings are immutable objects.  So we replace each string with a
list to give our data structure for the board.

board   = [ [ " ", " ", "x", "x", "x", " ", " " ],
                 [ " ", " ", "x", "x", "x", " ", " " ],
                 [ "x", "x", "x", "x", "x", "x", "x" ],
                 [ "x", "x", "x", ".", "x", "x", "x" ],
                 [ "x", "x", "x", "x", "x", "x", "x" ],
                 [ " ", " ", "x", "x", "x", " ", " " ],
                 [ " ", " ", "x", "x", "x", " ", " " ] ]



Data Structure for Tracking Moves

Moves are tracked in a list of board positions that acts as a stack.

stack = []
stack.append(firstmove)

The recursive routine takes the stack as its argument.  Moves are
generated and added to the stack.  After processing a move, it is popped
off the stack and another is tried.

def  traverse ( stack ):
     .......

#generate move
stack.append(copy.deepcopy(newboard)
traverse ( stack )
stack.pop()

     .......


