

Scientific Computing with Octave

Octave, GNUPlot and Other Tools

Dr. Michael Rakijas Benedict G. Archer Sept. 18, 1999

Agenda

- Octave Background, History and Uses
- Octave Description
- Installation and Support of Octave, GNUPlot and Other Tools
- Running Octave: How to Love the Command Line
- Plotting, Scripts and Other Tasks

Summary

Octave Description

- "GNU Octave is a high-level language, primarily for numerical computations. It provides a command line interface for solving linear and nonlinear problems numerically, and for performing numerical experiments using a language that is compatible with Matlab. It may also be used as a batch-oriented language." http://www.che.wisc.edu/octave/
- Short answer: it's just a sticky, mathematics-oriented blackboard

Octave History

- Octave was originally conceived (in about 1988) to be companion software for an undergraduate-level textbook on chemical reactor design being written by James B. Rawlings of the University of Wisconsin-Madison and John G. Ekerdt of the University of Texas. We originally envisioned some very specialized tools for the solution of chemical reactor design problems. Later, after seeing the limitations of that approach, we opted to attempt to build a much more flexible tool."
- Short answer: Some U. of Wis. profs needed a tool so they decided to put something together. It turned out to be wildly successful.

Octave's Uses and Value

Analysis Tool

- solving numerical linear algebra problems
- finding the roots of nonlinear equations
- integrating ordinary functions
- manipulating polynomials
- integrating ordinary differential and differential-algebraic equations

System Simulation Tool

- Control Theory
- Signal Processing
- Image Processing
- Audio Processing

Computational Engine

- Programmable
- Easily Extendible
- Graphical Comparison Tool

Octave Foundation for OS/2 Users

 Octave is Open Source under GNU GPL
 Precompiled OS/2 executable is available
 Releases available for Windows, Linux et al.
 At least one OS/2-only enhancement is available

Tool Suite Elements

File	Description	Location	Size
emxrt.zip*	EMX Runtime Library	ftp://hobbes.nmsu.edu/pub/os2/dev/emx/v0.9d	0.5 MB
octave-2_0_14-b01.zip	Octave ver. 2.0.14	ftp://ftp.che.wisc.edu/pub/octave/BINARIES/OS2/	5.2 MB
	exe		
octave-2_0_14-p02.zip	ver, 2.0.14 exe patch	ftp://ftp.che.wisc.edu/pub/octave/BINARIES/OS2/	I.4 MB
gp37os2.zip	Base OS/2 GNUPlot	ftp://ftp.ucc.ie/pub/gnuplot/	1.0 MB
gp37os2-mouse.zip	OS/2 GNUPlot	http://www.sci.muni.cz/~mikulik/gnuplot.html	0.4 MB
	Enhancement	ftp://ftp.ucc.ie/pub/gnuplot/contrib/	
less329-2.zip	OS/2 paging utility	ftp://ftp.leo.org/pub/comp/os/os2/leo/unix/	0.3 MB
EPM or other	Favorite text editor	Included with OS/2	N/A
gnufutil.zip	GNU file utilities	ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/systools/	0.8 MB
* Carens leve and installs v0.9c c	Grep (text find) utility th	ftp://ftp.leo.org/pub/comp/os/os2/leo/unix/ v0.9d	0.3 MB

 ** not required, just helpful

Tool Suite Installation

Install Octave

- Put octave-2_0_14-b01.zip in x:\ to unzip to x:\octave retaining path information
- Check out the README., README.OS2 files
- Change to x:\octave and type "inst-cmd /install" to install
 - makes necessary changes to CONFIG.SYS, expands sample script files, adds desktop icons
- Apply the patch by putting octave-2_0_14-p02.zip in same location (x:\ in example), unzipping
- Change to x:\octave and type "updt-cmd" to apply the patch, type "inst-cmd /clean" to remove unneeded files

Tool Suite Installation (cont.)

Install GNUPlot

- Make a GNUPlot directory like x:\GNUPLOT
- Put gp37os2.zip in it, unzip retaining directory structure
- Check out README.OS2, INSTALL.OS2 files
- Add environment variables to CONFIG.SYS
 - SET GNUPLOT=x:\GNUPLOT
 - SET GNUHELP=x:\GNUPLOT.GIH
- Add OS/2 mouse extensions, if desired
 - Expand gp37os2-mouse.zip and overwrite existing GNUPlot files

Install less, gnu file utilities

- Unzip and make them accessible to Octave by putting .exe's somewhere on the path
- Add gnufu.dll, gnuintl.dll somewhere on the LIBPATH

Running Octave

Type "octave" at a command-line prompt or double click the Octave icon to get started

Octave 2.0.14 for OS/2 2.x, Warp 3 and Warp 4. (Patchlevel 2.0.14-b02). Copyright (C) 1996, 1997, 1998 John W. Eaton. OS/2-Port by Klaus Gebhardt, 1996 - 1999. This is free software with ABSOLUTELY NO WARRANTY. For details, type `warranty'.

octave:1>

Define some variables for the "sticky blackboard":

```
octave:1>a=7
a = 7
octave:2>b=12;
octave:3>C=[1 2 3;4 5 6;7 8 9]
C =
1 2 3
4 5 6
7 8 9
octave:4>
```


Using the Command Line

What variables are on the blackboard now?

octa	ave:6>who			
***	currently	compiled	functions:	
leng	gth			
***	local use	r variable	es:	
С	а	b	oct	_home
octave:9>whos				

*** currently compiled functions:

prot	type	rows	cols	name
====	====	====	====	====
wd	user function	_	_	length

*** local user variables:

prot	type	rows	cols	name
====	====	====	====	
wd	matrix	3	3	С
wd	scalar	1	1	a
wd	scalar	1	1	b
wd	string	1	9	oct_home

Saving, Loading and Graphics

Save the workspace

- octave:10>save test
- octave: | | >clear
- octave:12>who

Loading a previously saved workspace

- octave: | 3>load test
- octave:14>who
- *** local user variables:
- C a b oct_home

Plotting a sequence of numbers and annotating it

- octave:16>for k=1:20;d(k)=sin(2*pi*k/20);end
- octave:17>plot(d)
- octave:18>xlabel("x text");ylabel("y text"); # Actually MATLAB syntax
- octave: 19>replot
- octave:20>gset xlabel "xlabel"; gset ylabel "ylabel"; # Normal Octave syntax
- octave:21>replot

Example I: Basic Problem Solving

Simple linear algebra problem: 3 ind. equations in 3 unk.

```
• x_1 - 12x_2 - 4x_3 = -5; -20x_1 + 3x_2 - 5x_3 = -119; -14x_1 - 3x_2 - 17x_3 = -53
```

This can be represented using the matrix equation Ax=b

```
Using Octave, this can be solved as follows:
octave:48>A=[1 -12 -4;-20 3 -5; -14 -3 -17]
A =
  | -12 -4
 -20 3 -5
 -14 -3 -17
octave:49>b=[-5;-119;-53]
b =
  -5
 -119
 -53
octave:50>A\b
ans =
 7.0000
 2.0000
 -3.0000
```


Example 2: Basic Signal Processing

Define a basic sine wave; $x(k)=3sin(2\pi k/10)$ as

k=1,2,3...256; Type

octave:51>for k=1:256;s(k)=cos(2*pi*k/10);end

Generate some Gaussian noise

octave:52>n=2*randn(256,1);

Add it to the signal

octave:54>x=s+n;

Take the magnitude of the Fourier transform of the time

series

octave:55>p=abs(fft(x));

Plot the result

octave:56>plot(p)

Resulting Plot

Example 3: Editing a script

- Create a basic text file, a few comment lines (#) to start
- Add a string of commands legal Octave commands
- Save the file somewhere on the Octave LOADPATH (type "path" at the prompt) with a .m suffix, like testum.m
- Type "testum" at the prompt, the commands will execute
- Type "help testum", the first comment lines will display octave:22>testum a = 7
 - b = 3 ans = 21 octave:23>help testum testum is the file: C:/doc/misc/expopres/testum.m This is a text file; This might a message I want to see quickly

if I need to remind myself of the contents of this file later on.

Example 4: Some Interesting Plots

clg domain = [-3:0.2:3]; range = [-5:0.2:5]; [x,y] = meshgrid(domain,domain); r = sqrt(x.^2 + y.^2) + 0.00001; z = sin(pi*r)./(pi*r); title('Sombrero') mesh(z) pause

clg t = range;s = sinc(t);s2 = s'*s;mesh(t,t,s2) pause clg c = cos(t); $c^{2} = c'^{*}c$: mesh(t,t,c2) pause contour(c2) pause

clg $sq = t.^{2};$ sq2 = sq'*sq;mesh(t,t,sq2) pause clg mesh(t,t,l-sq2) pause S = fft(log(t));clg plot(S) pause clg t = 0.1:0.1:100;polar(t,t.*log(t))

Resulting Plots

Resulting Plots (cont.)

Resulting Plots (cont.)

OS/2-only Mouse Enhancement

OS/2 benefits from mouse-plot interaction enhancements

You can

- copy locations in plot coordinates to the clipboard,
- find the distance between two locations in a plot,

and more

Resources

More Octave resources:

Octave FAQ:

http://www.che.wisc.edu/octave/FAQ.html

Gnuplot Site:

http://www.geocities.com/SiliconValley/Foothills/6647/

- Octave Mailing List
 - Put subscribe in body of an e-mail to help-octave-request@bevo.che.wisc.edu to subscribe to the Octave mailing list

Conclusion

- Octave is an accessible, easy to use numerical computation utility that can span the uses of the high school level to that of the complex tool needed by engineers
- We've shown how to start from scratch, assemble the utilities necessary to set up this powerful tool on your home computer